

Отладочный комплект NB-IoT Development Kit

Инструкция Начало работы RB-NBDK-011

info@redbees.ru

www.redbees.ru

Отладочный комплект NB-IoT Development Kit Инструкция. Начало работы

Оглавление				
1	Введение	3		
2	Обзор	4		
2.1	Назначение	4		
2.2	Состав	4		
2.2.1	Аппаратная часть	5		
2.2.2	Программная часть	5		
3	Начало работы	6		

1. Введение

1.1 Назначение документа

Данный документ содержит информацию, необходимую для начала работы с Отладочным комплектом NB-IoT Development Kit

1.2 Информация о документе					
Заголовок	Начало работы с Отладочным комплектом NB-IoT Development Kit				
Тип документа	Инструкция				
Код документа	RB-NBDK-01I				
Номер и дата последних изменений	№01 от 13.01.2020 г.				
	№02 от 29.09.2020 г.				
Производитель	000 «Ред Бис», Red Bees				
Этот документ не может быть перепечатан, воспроизведен или дублирован в любой форме, полностью или частично, без предварительного письменного согласия Производителя.					

1.3 Тип устройства

Отладочные комплекты NB-IoT Development Kit RB-NBDK

1.4 История изменений							
Ревизия	Дата	ФИО	Комментарии				
01	13.01.2020	КГС	Введение в действие документа				
02	22.09.2020	КГС	Изменения в связи изменением функционала прошивки, начиная с 2.3 release от 21.09.2020				

1.5 Термины

IoT (англ. Internet of Things) – Интернет Вещей IDE (англ. Integrated Development Environments) – интегрированные среды разработки NIDD (англ. Non-IP Data Delivery) – метод передачи данных через сеть оператора сотовой связи без их инкапсуляции в IP-пакет

СоАР (англ. Constrained Application Protocol) – протокол передачи данных для применения в устройствах с ограниченными ресурсами, работающий поверх UDP. Стандартизован как RFC 7252

2. Обзор

2.1 Назначение

Отладочный комплект NB-IoT Development Kit предназначен для ознакомления с работой сети стандарта NB-IoT, иллюстрации основных принципов построения устройств с реализацией передачи данных на основе радио модуля указанного стандарта, а также для использования при прототипировании таких устройств.

Предупреждения

Данный отладочный комплект не является законченным устройством и не предназначен для использования в качестве компонента законченных устройств. Любое подобное применение не соответствует назначению комплекта и осуществляется пользователем под собственную ответственность. Разработчикпроизводитель не несет ответственности за какие-либо инциденты, произошедшие в результате использования комплекта и/или его компонентов не по назначению, вследствие нарушения пользователем условий эксплуатации и/или общепринятых правил техники безопасности.

2.2 Состав

В Отладочный комплект NB-IoT Development Kit входят:

- Основная плата NB-IoT DevKit на основе радио модуля U-Blox SARA-R410M-02B-01 и микроконтроллера STM32L152RE

- Антенна LTE
- Необходимые кабели и перемычки
- Доступ к ІоТ платформе
- Комплект документации разработчика
- Модуль расширения с приемником GNSS (GPS/GLONASS) (опция)
- Программатор ST-Link V2 (опция)
- и др. компоненты по заказу

Конечный состав Отладочного комплекта NB-IoT Development Kit зависит от комплектации и исполнения, определяемыми при закупке.

Инструкция. Начало работы

2.2.1 Аппаратная часть

На Основной плате Отладочного комплекта NB-IoT Development Kit отсутствует встроенный программатор ST-Link. Для загрузки прошивки следует использовать программатор ST-Link, поставляемый в комплекте, либо использовать возможности встроенного загрузчика микроконтроллера STM32L152RE.

Помимо радиомодуля и управляющего микроконтроллера, на базово на плате расположены:

- Температурный датчик DS1721/TMP75/ TMP175 или аналогичный

- Акселерометр LIS3DH или аналогичный
- Moct USB-UART CP2102
- (U)SIM-карта/чип, обеспечивающие работу радиомодуля в сети оператора
- Вспомогательные компоненты

Температурный датчик и акселерометр подключены к шине I2С микроконтроллера. Преобразователь USB-UART обеспечивает подключение к микроконтроллеру через UART.

Конечный состав Основной платы NB-IoT Dev Kit Отладочного комплекта NB-IoT Development Kit зависит от комплектации и исполнения, определяемыми при закупке.

2.2.2 Программная часть

Основная плата поставляется с демонстрационной прошивкой NB-IoT Dev Kit FW, реализующей сервисное меню, предоставляющее широкий набор сервисных функций, позволяющих в полной мере оценить возможности комплекта, а также получить прямой доступ к радиомодулю. Подробное описание прошивки приведено в документации на встроенную прошивку RB-NBDK-01-01D.

Основная плата Отладочного комплекта NB-IoT Development Kit допускает разработку встроенного ПО с использованием Arduino IDE и аппаратно-совместима с модулями расширения Ардуино (shields). Обеспечивается программная совместимость с Ардуино-инструментарием для платы NUCLEO-L152RE. Таким образом, все инструменты, предназначенные для NUCLEO-L152RE, могут быть непосредственно использованы при разработке ПО для отладочной платы NB-IoT Development Kit.

3 Начало работы

Шаг 1: Регистрация на ІоТ-платформе

Действуйте согласно инструкциям, приведенным на упаковке (кейсе) отладочного комплекта NB-IoT Development Kit.

Для регистрации Вам понадобится номер **ICCID**, который напечатан на обратной стороне кейса. ICCID также можно узнать с помощью сервисного меню, реализованного в демонстрационной прошивке.

Шаг 2: Настройка ІоТ-платформы

После получения доступа для настройки IoT-платформы воспользуйтесь инструкциями, приведенными в интерфейсе.

На этом этапе требуется создать учетную запись для устройства, которая будет служить конечной точкой передачи телеметрии с Основной платы Отладочного комплекта NB-IoT Development Kit.

Заметки

Идентификатор устройства (ТОКЕН) входит в состав ссылки URL, по которому Основная плата будет загружать данные. Таким образом, ТОКЕН связывает физическое устройство с его учетной записью на платформе.

Шаг 3: Подключение платы

Подключите к Основной плате антенну сети LTE.

Подключите к Основной плате при наличии плату расширения с аксессуарами.

После этого подключите Основную плату к компьютеру кабелем USB с помощью разъема XS8.

Предупреждения

Подключение антенн, плат расширения и другие устройств/приборов к Основной плате осуществлять только при отключенном питании (USB).

Шаг 4: Настройка платы

Демонстрационная прошивка взаимодействует с пользователем через текстовую консоль, реализованную через порт UART микроконтроллера, подключенный к преобразователю USB-UART. Чтобы получить доступ к консоли, после настройки подключения платы:

Идентифицируйте номер виртуального СОМ-порта, созданного Вашей операционной системой.

Подключитесь к компьютеру с помощью любой программы-эмулятора терминала.

Заметки

Настройки подключения:

До версии прошивки 2.1: 38400 бит/с, 8 бит данных, без контроля четности.

Начиная с версии прошивки 2.1 beta: 115200 бит/с, 8 бит данных, без контроля четности.

В используемой программе-эмуляторе терминала следует включить функцию local echo. В качестве программы-эмулятора терминала можно использовать, например, PuTTY.

Если после подключения к плате информация в терминале отсутствует - перезагрузите контроллер кнопкой SB2.

После подключения к консоли дождитесь полной загрузки платы. По умолчанию активируется режим сервисного меню. Если этого не произошло, войдите в сервисное меню принудительно:

- 1. нажмите кнопку SB1
- 2. перезагрузите плату кнопкой SB2

3. удерживайте кнопку SB1 до тех пор, пока в терминале не появится сообщение «(!) The device will enter service menu».

Отладочный комплект NB-IoT Development Kit

Инструкция. Начало работы

R COM20 - PuTTY	- 0 ×			
Board started, console initialized.				
Found LSE already running.				
I2C configured.				
USART3 configured.				
Uptime timer started.				
latsia cucles per second.				
Accelerometer initialized.				
Temperature sensor initialized.				
Board initialization complete.				
(!) The device will enter service menu.				
Starting SAKA-K410M				
No startup mesage from the module, checking if it is already running.				
Attempt 1				
Attempt 2				
Module was already running, OK.				
IP mode used.				
Switching off the use of PSM				
*** Welcome to MTS NE-TOT Development Kit service menu ***				
Firmware version: 2.3 release 21.09.2020				
Current settings found in EEPROM:				
Target IP: 195.34.49.22				
larget UKL: /api/vi/tzwnbvGlAlAldSSBUrwu/telemetry				
The NID for telemetry 0				
Board mode on startup: service menu	-			
Telemetry interval	-			
(in logger mode): 1000 ms				
GNSS privacy mode: 1				
Time in a function number from a list below and average enter				
Type in a function number from a fist below and press enter.				
Target server setup:				
1 - set the URL of the resource JSON data will be transmitted to				
2 - set the IP address				
3 - set the port				
4 - set an APN for NIDD access or turn NIDD mode ON or OFF				
System functions.				
6 - wait for incoming NDD data during specified timeout (and then exit)				
7 - test CoAP OBSERVE function				
8 - enter direct AT-command mode				
9 - enter true direct mode to access the RF module				
CAUTION: to exit this mode you will have to reboot the board physically				
10 - show beautrification data (serial numbers, finaware versions, etc.)				
12 - set telemetry transmission interval				
13 - set GNSS privacy mode				
(hide actual location data when transmitting on server)				
14 - set firmware startup mode (setup or logger)				
15 - read on-board sensors and try to acquire GNSS data				
16 - reboot MCU				
17 - febolt kr module				
(do not use this unless you really know what you want)				
	-			

Заметки

Актуальное описание функций сервисного меню доступно в документации на прошивку RB-NBDK-01-01D.

Для штатной работы платы с IoT-платформой требуется задать **ссылку URL**, по которому данные телеметрии будут передаваться на сервер. Для этого в режиме сервисного меню введите 1 и нажмите enter. После этого введите URL вида

Заметки

При отключенной функции local echo в программе-эмуляторе терминала будет не видно вводимых данных.

После ввода URL нажмите enter. Настройка будет применена.

После этого можно выполнить **тестовую пересылку** (п. 5 сервисного меню) сообщения на сервер, либо перейти в режим **постоянной передачи** (через п. 12 сервисного меню) телеметрии.

Данные, принятые от устройства, будут отображаться на соответствующей вкладке в свойствах устройства на платформе.

Чтобы выполнить тестовую пересылку сообщения, введите в консоли цифру 5 и нажмите enter.

Сконфигурировать режим непрерывной передачи телеметрии можно с помощью опции 12 сервисного меню. Данные будут передаваться на платформу по протоколу СоАР.

Для отправки данных NIDD (non-IP data delivery) нужно создать новое устройство на платформе (повторить шаг 2). При этом URL определяется подпиской, созданной на сетевом элементе SCEF.

Задайте APN и включите режим NIDD в разделе 4 сервисного меню.

Отправьте данные, используя раздел 5 сервисного меню.

Заметки

URL и APN для NIDD будут сформированы в процессе регистрации только в том случае, если необходимость активации данного функционала будет указана в запросе на регистрацию.